Affiliation:
1. College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai 200090 P. R. China
2. Shanghai Non‐Carbon Energy Conversion and Utilization Institute Shanghai 200090 P. R. China
3. Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry Shanghai 200090 P. R. China
Abstract
AbstractPhotocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar‐to‐chemical energy conversion. Single‐atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single‐atom photocatalysts in detail. Subsequently, the fascinating effects of single‐atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron‐hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single‐atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single‐atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single‐atom photocatalysts and promote the development of high‐performance photocatalytic systems.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献