Recent Progress of Single‐Atom Photocatalysts Applied in Energy Conversion and Environmental Protection

Author:

Li Chu‐fan1,Pan Wei‐guo123,Zhang Zhen‐rui1,Wu Tong1,Guo Rui‐tang123ORCID

Affiliation:

1. College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai 200090 P. R. China

2. Shanghai Non‐Carbon Energy Conversion and Utilization Institute Shanghai 200090 P. R. China

3. Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry Shanghai 200090 P. R. China

Abstract

AbstractPhotocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar‐to‐chemical energy conversion. Single‐atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single‐atom photocatalysts in detail. Subsequently, the fascinating effects of single‐atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron‐hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single‐atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single‐atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single‐atom photocatalysts and promote the development of high‐performance photocatalytic systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3