Negatively Charged Hydrophobic Carbon Nano‐Onion Interfacial Layer Enabling High‐Rate and Ultralong‐Life Zn‐Based Energy Storage

Author:

Peng Xinya1,Li Yang2,Kang Fulian1,Li Xu1,Zheng Zhiyuan1,Dong Liubing1ORCID

Affiliation:

1. College of Chemistry and Materials Science Jinan University Guangzhou 511443 China

2. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

Abstract

AbstractZn‐based electrochemical energy storage (EES) systems are attracting more attention, whereas their large‐scale application is restricted by the dendrite and parasitic reaction‐caused unstable Zn anodes. Herein, a negatively charged hydrophobic carbon nano‐onion (CNO) interfacial layer is proposed to realize ultrastable and high‐rate Zn anodes, enabling high‐performance Zn‐based EES. For the CNO interfacial layer, its hydrophobicity not only blocks active water but also reduces the Zn2+ desolvation barrier, and meanwhile, the negatively‐charged CNO nanoparticles adsorb Zn2+ and repel SO42− to homogenize Zn2+ flux, accelerate Zn2+ desolvation and suppress the self‐corrosion of Zn anodes. Besides, the conductive CNO interfacial layer increases the surface area for the Zn deposition to reduce local current density. Consequently, under the modulation of the CNO interfacial layer, Zn plating/stripping exhibits impressive reversibility with an average Coulombic efficiency of 99.4% over 800 cycles, and Zn anodes present significantly enhanced electrochemical stability and rate performance, whose operation lifetime exceeds 2000 h at 1 mA cm−2 and 350 h even at 10 mA cm−2. Moreover, high‐rate and ultralong‐life Zn‐ion hybrid supercapacitors are achieved with the CNO interfacial layer‐modulated Zn anode and activated CNO cathode. This work provides new thinking in regulating the Zn deposition interface to realize high‐performance Zn‐based EES.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3