Affiliation:
1. State Key Laboratory of Food Nutrition & Safety Tianjin University of Science and Technology Tianjin P. R. China
2. Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education) Tianjin University of Science and Technology Tianjin P. R. China
3. College of Traditional Chinese Medicine Weifang Medical University Weifang Shandong P. R. China
4. Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants Tianjin P. R. China
Abstract
AbstractAn asymmetric wound dressing acts as a skin‐like structure serves as a protective barrier between a wound and its surroundings. It allows for the absorption of tissue fluids and the release of active substances at the wound site, thus speeding up the healing process. However, the production of such wound dressings requires the acquisition of specialized tools, expensive polymers, and solvents that contain harmful byproducts. In this study, an asymmetric bacterial cellulose (ABC) wound dressing using starch as a porogen has been developed. By incorporating silver‐metal organic frameworks (Ag‐MOF) and curcumin into the ABC membrane, the wound dressing gains antioxidant, reactive oxygen species (ROS) scavenging, and anti‐bacterial activities. Compared to BC‐based wound dressings, this dressing promotes efficient dissolution and controlled release of curcumin and silver ions. In a full‐thickness skin defect model, wound dressing not only inhibits the growth of bacteria on infected wounds but also regulates the release of curcumin to reduce inflammation and promote the production of epithelium, blood vessels, and collagen. Consequently, this dressing provides superior wound treatment compared to BC‐based dressing.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献