Breaking through Barriers: Ultrafast Microbullet Based on Cavitation Bubble

Author:

Feng Yiwen1,Jia Deli2,Yue Honger1,Wang Jie3,Song Wenping14,Li Longqiu1,Zhang A‐Man3,Li Shuai3,Chang Xiaocong14,Zhou Dekai14ORCID

Affiliation:

1. Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology) Ministry of Education Harbin 150001 China

2. Research Institute of Petroleum Exploration & Development PetroChina Company Limited Beijing 100083 China

3. College of Shipbuilding Engineering Harbin Engineering University Harbin 150001 China

4. Chongqing Research Institute of Harbin Institute of Technology Chongqing 401151 China

Abstract

AbstractMicromotors hold great promise for extensive practical applications such as those in biomedical domains and reservoir exploration. However, insufficient propulsion of the micromotor limits its application in crossing biological barriers and breaking reservoir boundaries. In this study, an ultrafast microbullet based on laser cavitation that can utilize the energy of a cavitation bubble and realize its own hurtling motion is reported. The experiments are performed using high‐speed photography. A boundary integral method is adopted to reveal the motion mechanism of a polystyrene (PS)/magnetic nanoparticle (MNP) microbullet under the action of laser cavitation. Furthermore, the influence of certain factors (including laser intensity, microbullet size, and ambient temperature) on the motion of the microbullet was explored. For the PS/MNP microbullet driven by laser cavitation, the instantaneous velocity obtained can reach 5.23 m s−1. This strategy of driving the PS/MNP microbullet provides strong penetration ability and targeted motion. It is believed that the reported propulsion mechanism opens up new possibilities for micromotors in a wide range of engineering applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Harbin Institute of Technology

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3