Blocking Metal Nanocluster Growth through Ligand Coordination and Subsequent Polymerization: The Case of Ruthenium Nanoclusters as Robust Hydrogen Evolution Electrocatalysts

Author:

Wang Xiaohong1,Li DongXu1,Dai Juguo12,Xue Qian3,Yang Chunying1,Xia Long1,Qi Xueqiang23,Bao Bingtao1,Yang Siyu1,Xu Yiting1,Yuan Conghui1,Luo Weiang1,Cabot Andreu24ORCID,Dai Lizong1

Affiliation:

1. College of Materials Fujian Provincial Key Laboratory of Fire Retardant Materials Xiamen Key Laboratory of Fire Retardant Materials Xiamen University Xiamen 361005 China

2. Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona Catalonia 08930 Spain

3. College of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing 400054 China

4. ICREA Pg. Lluis Companys 23 Barcelona Catalonia 08010 Spain

Abstract

AbstractMetal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co‐doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N‐rich 4‐(4‐aminophenyl)‐2,2:6,2′′‐terpyridine (TPY‐NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg−1Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d‐band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost‐effective and robust electrocatalysts based on carbon‐supported transition metal nanoclusters for future energy technologies.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3