Synergy Between Surface Confinement and Heterointerfacial Regulations with Fast Electron/Ion Migration in InSe‐PPy for Sodium‐Ion Storage

Author:

Chen Penglei12,Pei Xiangdong3,Liu Ruyi4,Wang Jinbao2,Lu Yuemeng4,Gu Huaiqiang5,Tan Lei6,Du Xin2,Li Dan2ORCID,Wang Luxiang1ORCID

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830017 P. R. China

2. College of Chemistry Zhengzhou University Zhengzhou Henan Province 450001 P. R. China

3. Shanxi Supercomputing Center Lvliang 033000 P. R. China

4. National Supercomputing Center in Zhengzhou Zhengzhou 450001 P. R. China

5. School of Nuclear Science and Technology Lanzhou University Lanzhou 730000 P. R. China

6. Institute of Theoretical Physics Lanzhou University Lanzhou 730000 P. R. China

Abstract

AbstractLayered indium selenide (InSe) is a new 2D semiconductor material with high carrier mobility, widely adjustable bandgap, and high ductility. However, its ion storage behavior and related electrochemical reaction mechanism are rarely reported. In this study, InSe nanoflakes encapsulated in conductive polypyrrole (InSe@PPy) are designed in consideration of restraining the severe volume change in the electrochemical reaction and increasing conductivity via in situ chemical oxidation polymerization. Density functional theory calculations demonstrate that the construction of heterostructure can generate an internal electric field to accelerate electron transfer via additional driving forces, offering synergistically enhanced structural stability, electrical conductivity, and Na+ diffusion process. The resulting InSe@PPy composite shows outstanding electrochemical performance in the sodium ion batteries system, achieving a high reversible capacity of 336.4 mA h g−1 after 500 cycles at 1 A g−1 and a long‐term cyclic stability with capacity of 274.4 mA h g−1 after 2800 cycles at 5 A g−1. In particular, the investigation of capacity fluctuation within the first cycling reveals the alternating significance of intercalation and conversion reactions and evanescent alloying reaction. The combined reaction mechanism of insertion, conversion, and alloying of InSe@PPy is revealed by in situ X‐ray diffraction, ex situ electrochemical impedance spectroscopy, and transmission electron microscopy.

Funder

Natural Science Foundation of Henan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3