Affiliation:
1. State Key Laboratory of Organic–Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
2. Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing 100029 China
Abstract
AbstractPlatinum (Pt)‐based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size‐tunable Pt‐based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro‐mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt‐based nanoflowers are instantaneously achieved at room temperature. As a proof‐of‐concept, as‐synthesized Platinum‐Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti‐CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt−1, 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d‐band center of Pt caused by high alloying degree.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献