Design of Atomically Dispersed CoN4 Sites and Co Clusters for Synergistically Enhanced Oxygen Reduction Electrocatalysis

Author:

Rong Jian12ORCID,Chen Wangyi1,Gao Erhao1,Wu Jing1,Ao Huaisheng3,Zheng Xudong1,Zhang Yuzhe1,Li Zhongyu13,Kim Minjun4ORCID,Yamauchi Yusuke456ORCID,Wang Chaohai7ORCID

Affiliation:

1. School of Environmental Science and Engineering Changzhou University Changzhou Jiangsu 213614 China

2. Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center Changzhou Jiangsu 213164 China

3. School of Petrochemical Engineering Changzhou University Changzhou Jiangsu 213614 China

4. Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia

5. Department of Plant & Environmental New Resources College of Life Sciences Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 17104 South Korea

6. Department of Materials Process Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan

7. Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization School of Municipal and Environmental Engineering Henan University of Urban Construction Pingdingshan Henan 467036 China

Abstract

AbstractConstructing dual‐site catalysts consisting of atomically dispersed metal single atoms and metal atomic clusters (MACs) is a promising approach to further boost the catalytic activity for oxygen reduction reaction (ORR). Herein, a porous CoSA‐AC@SNC featuring the coexistence of Co single‐atom sites (CoN4) and S‐coordinated Co atomic clusters (SCo6) in S, N co‐doped carbon substrate is successfully synthesized by using porphyrinic metal‐organic framework (Co‐TPyP MOF) as the precursor. The introduction of the sulfur source creates abundant microstructural defects to anchor Co metal clusters, thus modulating the electronic structure of its surrounding carbon substrate. The synergistic effect between the two types of active sites and structural advantages, in turn, results in high ORR performance of CoSA‐AC@SNC with half‐wave potential (E1/2) of 0.86 V and Tafel slope of 50.17 mV dec−1. Density functional theory (DFT) calculations also support the synergistic effect between CoN4 and SCo6 by detailing the catalytic mechanism for the improved ORR performance. The as‐fabricated Zn–air battery (ZAB) using CoSA‐AC@SNC demonstrates impressive peak power density of 174.1 mW cm−2 and charge/discharge durability for 148 h. This work provides a facile synthesis route for dual‐site catalysts and can be extended to the development of other efficient atomically dispersed metal‐based electrocatalysts.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3