Disentangling the Li‐Ion transport and Boundary Phase Transition Processes in Li10GeP2S12 Electrolyte by In‐Operando High‐Pressure and High‐Resolution NMR Spectroscopy

Author:

Chen Xinchang12,Zhang Jinxiao1,Zhong Guiming23ORCID,Ouyang Yimei2,Yu Shicheng4ORCID,Wang Chao2,Sun Ke2,Liao Xunfan5,Kuang Xiaojun1ORCID,Chen Yiwang5,Peng Zhangquan2ORCID

Affiliation:

1. Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin 541006 China

2. Laboratory of Advanced Spectro‐electrochemistry and Li‐ion Batteries Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

3. 21C Innovation Laboratory Contemporary Amperex Technology Ltd. (21C LAB) Ningde 352100 China

4. Institut für Energie‐und Klimaforschung (IEK‐9: Grundlagen der Elektrochemie) Forschungszentrum Jülich 52425 Jülich Germany

5. National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University Nanchang 330022 China

Abstract

AbstractLi‐ion transport and phase transition of solid electrolytes are critical and fundamental issues governing the rate and cycling performances of solid‐state batteries. In this work, in‐operando high‐pressure nuclear magnetic resonance (NMR) spectroscopy for the solid‐state battery is developed and applied, in combination with 6Li‐tracer NMR and high‐resolution NMR spectroscopy, to investigate the Li10GeP2S12 electrolyte under true‐to‐life operation conditions. The results reveal that the Li10GeP2S12 phase may become more disordered and a large amount of conductive metastable β‐Li3PS4 as the glassy matrix in the electrolyte transforms into less conductive phases, mainly γ‐Li3PS4, when high current densities (e.g., ≥0.5 mA cm−2) are applied to the electrolyte. The overall Li‐transport also varies and shows a tendency of boundary phases and Li10GeP2S12 synergistic dominant conduction at high currents. Accordingly, a mechanism of structural change induced by stress variation due to the drastic morphological change during Li‐In alloying at high currents, and the local Li+ diffusion coefficient discrepancy is proposed. These new findings of Li‐ion transport and boundary phase transition in Li10GeP2S12 solid electrolyte under high‐pressure and high current density are first reported and will help provide previously lacking insights into the relationship of structure and performance of Li10GeP2S12.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Dalian Institute of Chemical Physics

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3