Dual‐Defect Engineering of Bidirectional Catalyst for High‐Performing Lithium‐Sulfur Batteries

Author:

Zhou Xiaoya1,Cui Yuchen1,Huang Xin1,Wu Xin1,Sun Hao2,Tang Shaochun1ORCID

Affiliation:

1. Key National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Artificial Functional Materials College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China

2. Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University Shanghai 200240 China

Abstract

AbstractPractical applications of lithium‐sulfur (Li‐S) batteries have been hindered by sluggish reaction kinetics and severe capacity decay during charge‐discharge cycling due to the notorious shuttle effect of polysulfide and the unfavored deposition and dissolution of Li2S. Herein, to address these issues, a double‐defect engineering strategy is developed for preparing Co‐doped FeP catalyst containing P vacancies on MXene, which effectively improves the bidirectional redox of Li2S. Mechanism analysis indicates that P vacancy accelerates Li2S nucleation via increased unsaturated sites, and Co doping generates local electric field to reduce the reaction energy barrier and accelerate Li2S dissolution. MXene provides highly conductive channels for electron transport, and effectively captures polysulfide. The double‐defect catalyst enables an impressive reversible specific capacity of 1297.9 mAh g−1 at 0.2 C, and excellent rate capability of 726.5 mAh g−1 at 4 C. Remarkably, it demonstrates excellent cycling stability with capacity retention of 533.3 mAh g−1 after 500 cycles at 2 C. The results can unlock the double‐defect engineering of vacancy induction and heteroatomic doping towards practical Li‐S batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3