Polysaccharide‐Targeting Lipid Nanoparticles to Kill Gram‐Negative Bacteria

Author:

Lai Xiangfeng1ORCID,Chow Seong Hoong2,Le Brun Anton P.3,Muir Benjamin W.4,Bergen Phillip J.5,White Jacinta4,Yu Heidi H.5,Wang Jiping5,Danne Jill6,Jiang Jhih‐hang5,Short Francesca L.5,Han Mei‐Ling5,Strugnell Richard A.7,Song Jiangning2,Cameron Neil R.1,Peleg Anton Y.5,Li Jian5,Shen Hsin‐Hui15ORCID

Affiliation:

1. Department of Materials Science and Engineering Faculty of Engineering Monash University Clayton Victoria 3800 Australia

2. Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Victoria 3800 Australia

3. Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organisation Locked Bag 2001, Kirrawee DC New South Wales 2232 Australia

4. CSIRO Manufacturing Clayton Victoria 3168 Australia

5. Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Microbiology Monash University Clayton Victoria 3800 Australia

6. Monash Ramaciotti Centre for Cryo‐Electron Microscopy A Node of Microscopy Australia Monash University Clayton Victoria 3800 Australia

7. Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity University of Melbourne Melbourne Victoria 3000 Australia

Abstract

AbstractThe rapid increase and spread of Gram‐negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin‐based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulentKlebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicityin vitroand is highly effective in combatingK. pneumoniaeinfectionin vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug‐resistant Gram‐negative pathogens.

Funder

National Health and Medical Research Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3