MOF‐Derived In2O3/CuO p‐n Heterojunction Photoanode Incorporating Graphene Nanoribbons for Solar Hydrogen Generation

Author:

Shi Li12,Benetti Daniele1ORCID,Wei Qin2,Rosei Federico1ORCID

Affiliation:

1. Centre for Energy Materials and Telecommunications Institut National de la Recherche Scientifique 1650 Boul. Lionel‐Boulet Varennes QC J3×1P7 Canada

2. Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China

Abstract

AbstractSolar‐driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H2) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p‐n heterojunctions based on composite metal oxides. Herein, a MOF‐on‐MOF (metal‐organic framework) template is employed as the precursor to synthesize In2O3/CuO p‐n heterojunction composite. After incorporation of small amounts of graphene nanoribbons (GNRs), the optimized PEC devices exhibited a maximum current density of 1.51 mA cm−2 (at 1.6 V vs RHE) under one sun illumination (AM 1.5G, 100 mW cm−2), which is approximately four times higher than that of the reference device based on only In2O3 photoanodes. The improvement in the performance of these hybrid anodes is attributed to the presence of a p‐n heterojunction that enhances the separation efficiency of photogenerated electron‐hole pairs and suppresses charge recombination, as well as the presence of GNRs that can increase the conductivity by offering better path for electron transport, thus reducing the charge transfer resistance. The proposed MOF‐derived In2O3/CuO p‐n heterojunction composite is used to demonstrate a high‐performance PEC device for hydrogen generation.

Funder

Natural Science Foundation of Shandong Province

Fonds de recherche du Québec – Nature et technologies

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3