An Asymmetric Layer Structure Enables Robust Multifunctional Wearable Bacterial Cellulose Composite Film with Excellent Electrothermal/Photothermal and EMI Shielding Performance

Author:

Yang Yanlong1,Shao Liang1ORCID,Wang Jie2,Ji Zhanyou1,Zhang Tao1,Wu Mingjie1,He Yingkun1,Wang Caiyun3,Ma Jianzhong2

Affiliation:

1. College of Chemistry and Chemical Engineering Key Laboratory of Chemical Additives for China National Light Industry Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China

2. Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 P. R. China

3. Intelligent Polymer Research Institute AIIM Facility University of Wollongong Innovation Campus North Wollongong NSW 2500 Australia

Abstract

AbstractHighly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx (BC@Fe3O4/CNT/Ti3C2Tx) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6‐layer composite film with 40% of Ti3C2Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self‐assembly strategy between Ti3C2Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient “absorption–reflection–reabsorption” mechanism. Furthermore, this composite film also exhibits excellent low‐voltage‐driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast‐response photothermal performance (up to 101.5 °C at 1.0 W cm−2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx composite film has promising potentials for next‐generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Provincial Department of Education

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3