Dual Nanofillers Reinforced Polymer‐Inorganic Nanocomposite Film with Enhanced Mechanical Properties

Author:

Peng Boxiang1,Li Qin1,Yu Bing1,Zhang Jiahao1,Yang Sijie1,Lu Ruijie1,Sun Xia1,Li Xiaojie1,Ning Yin1ORCID

Affiliation:

1. College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry Jinan University Guangzhou 510632 China

Abstract

AbstractSimultaneously improving the strength and toughness of polymer‐inorganic nanocomposites is highly desirable but remains technically challenging. Herein, a simple yet effective pathway to prepare polymer‐inorganic nanocomposite films that exhibit excellent mechanical properties due to their unique composition and structure is demonstrated. Specifically, a series of poly(methacrylic acid)xblock‐poly(benzyl methacrylate)y diblock copolymer nano‐objects with differing dimensions and morphologies is prepared by polymerization‐induced self‐assembly (PISA) mediated by reversible addition‐fragmentation chain transfer polymerization (RAFT). Such copolymer nano‐objects and ultrasmall calcium phosphate oligomers (CPOs) are used as dual fillers for the preparation of polymer‐inorganic composite films using sodium carboxymethyl cellulose (CMC) as a matrix. Impressively, the strength and toughness of such composite films are substantially reinforced as high as up to 202.5 ± 14.8 MPa and 62.3 ± 7.9 MJ m−3, respectively. Owing to the intimate interaction between the polymer‐inorganic interphases at multiple scales, their mechanical performances are superior to most conventional polymer films and other nanocomposite films. This study demonstrates the combination of polymeric fillers and inorganic fillers to reinforce the mechanical properties of the resultant composite films, providing new insights into the design rules for the construction of novel hybrid films with excellent mechanical performances.

Funder

Fundamental Research Funds for the Central Universities

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3