Affiliation:
1. Key Laboratory of MEMS of the Ministry of Education Southeast University Nanjing 210096 China
Abstract
AbstractSoft robots based on flexible materials have attracted the attention due to high flexibility and great environmental adaptability. Among the common driving modes, electricity, light, and magnetism have the limitations of wiring, poor penetration capability, and sophisticated equipment, respectively. Here, an emerging wireless driving mode is proposed for the soft crawling robot based on wireless power transfer (WPT) technology. The receiving coil at the robot's tail, as an energy transfer station, receives energy from the transmitting coil and supplies the electrothermal responsiveness to drive the robot's crawling. By regulating the WPT's duration to control the friction between the robot and the ground, bidirectional crawling is realized. Furthermore, the receiving coil is also employed as a sensory organ to equip the robot with localization, ID recognition, and sensing capabilities based on electromagnetic coupling. This work provides an innovative and promising strategy for the design and integration of soft crawling robots, exhibiting great potential in the field of intelligent robots.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献