Crack‐Resistant Si‐C Hybrid Microspheres for High‐Performance Lithium‐Ion Battery Anodes

Author:

Shen Liao12,Wang Pengcheng134,Fang Chenxi1,Lin Zhongfeiyu1,Zhao Guiying134,Li Shaoyuan2,Lin Yingbin134,Huang Zhigao134,Li Jiaxin134ORCID

Affiliation:

1. College of Physics and Energy Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center Fujian Normal University Fuzhou 350117 China

2. Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming 650093 China

3. Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and Engineering Fuzhou 350117 China

4. Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials Fuzhou 350117 China

Abstract

AbstractTo effectively solve the challenges of rapid capacity decay and electrode crushing of silicon‐carbon (Si‐C) anodes, it is crucial to carefully optimize the structure of Si‐C active materials and enhance their electron/ion transport dynamic in the electrode. Herein, a unique hybrid structure microsphere of Si/C/CNTs/Cu with surface wrinkles is prepared through a simple ultrasonic atomization pyrolysis and calcination method. Low‐cost nanoscale Si waste is embedded into the pyrolysis carbon matrix, cleverly combined with the flexible electrical conductivity carbon nanotubes (CNTs) and copper (Cu) particles, enhancing both the crack resistance and transport kinetics of the entire electrode material. Remarkably, as a lithium‐ion battery anode, the fabricated Si/C/CNTs/Cu electrode exhibits stable cycling for up to 2300 cycles even at a current of 2.0 A g−1, retaining a capacity of ≈700 mAh g−1, with a retention rate of 100% compared to the cycling started at a current of 2.0 A g−1. Additionally, when paired with an NCM523 cathode, the full cell exhibits a capacity of 135 mAh g−1 after 100 cycles at 1.0 C. Therefore, this synthesis strategy provides insights into the design of long‐life, practical anode electrode materials with micro/nano‐spherical hybrid structures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3