Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake

Author:

Nißler Robert123ORCID,Dennebouy Lena1,Gogos Alexander12ORCID,Gerken Lukas R.H.12ORCID,Dommke Maximilian4,Zimmermann Monika12,Pais Michael A.5,Neuer Anna L.12ORCID,Matter Martin T.12ORCID,Kissling Vera M.2ORCID,de Brot Simone6ORCID,Lese Ioana5ORCID,Herrmann Inge K.123ORCID

Affiliation:

1. Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D‐MAVT) ETH Zurich Sonneggstrasse 3 Zurich 8092 Switzerland

2. Particles‐Biology Interactions, Department of Materials Meet Life Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland

3. The Ingenuity Lab, University Hospital Balgrist University of Zurich Forchstrasse 340 Zurich 8008 Switzerland

4. Institute of Technical Chemistry and Environmental Chemistry Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany

5. Department of Plastic and Hand Surgery, Inselspital Bern University Hospital Bern 3010 Switzerland

6. COMPATH, Institute of Animal Pathology University of Bern Bern 3012 Switzerland

Abstract

AbstractEngineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano‐analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue‐resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.

Funder

Swiss Cancer Research Foundation

Eidgenössische Technische Hochschule Zürich

Innosuisse - Schweizerische Agentur für Innovationsförderung

ETH Zürich Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3