Dual Interface Compatibility Enabled via Composite Solid Electrolyte with High Transference Number for Long‐Life All‐Solid‐State Lithium Metal Batteries

Author:

Cui Mengyang1,Fu Shiyang2,Yuan Shisheng1,Jin Bo1,Liu Hui1,Li Yiyang1,Gao Nan2,Jiang Qing1ORCID

Affiliation:

1. Key Laboratory of Automobile Materials Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China

2. State Key Lab of Superhard Materials College of Physics Jilin University Changchun 130012 China

Abstract

AbstractThe development of solid‐state electrolytes (SSEs) effectively solves the safety problem derived from dendrite growth and volume change of lithium during cycling. In the meantime, the SSEs possess non‐flammability compared to conventional organic liquid electrolytes. Replacing liquid electrolytes with SSEs to assemble all‐solid‐state lithium metal batteries (ASSLMBs) has garnered significant attention as a promising energy storage/conversion technology for the future. Herein, a composite solid electrolyte containing two inorganic components (Li6.25Al0.25La3Zr2O12, Al2O3) and an organic polyvinylidene difluoride matrix is designed rationally. X‐ray photoelectron spectroscopy and density functional theory calculation results demonstrate the synergistic effect among the components, which results in enhanced ionic conductivity, high lithium‐ion transference number, extended electrochemical window, and outstanding dual interface compatibility. As a result, Li||Li symmetric battery maintains a stable cycle for over 2500 h. Moreover, all‐solid‐state lithium metal battery assembled with LiNi0.6Co0.2Mn0.2O2 cathode delivers a high discharge capacity of 168 mAh g−1 after 360 cycles at 0.1 C at 25 °C, and all‐solid‐state lithium–sulfur battery also exhibits a high initial discharge capacity of 912 mAh g−1 at 0.1 C. This work demonstrates a long‐life flexible composite solid electrolyte with excellent interface compatibility, providing an innovative way for the rational construction of next‐generation high‐energy‐density ASSLMBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3