Fabrication of Multi‐Layered Paper‐Based Supercapacitor Anode by Growing Cu(OH)2 Nanorods on Oxygen Functional Groups‐Rich Sponge‐Like Carbon Fibers

Author:

Zhang Guoliang12,Li Yaoyao3,Zhu Ruifeng1,Huang Zhe2,Zhang Dan1,Long Zhu1ORCID,Li Yuning2

Affiliation:

1. Key Laboratory of Eco‐textiles Ministry of Education Jiangnan University Wuxi 214122 P. R. China

2. Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo 200 University Ave West Ontario N2L 3G1 Canada

3. Key Laboratory of Luminescence and Optical Information Beijing Jiaotong University Ministry of Education Beijing 100044 China

Abstract

AbstractThis work addresses the challenges in developing carbon fiber paper‐based supercapacitors (SCs) with high energy density by focusing on the limited capacity of carbon fiber. To overcome this limitation, a sponge‐like porous carbon fiber paper enriched with oxygen functional groups (OFGs) is prepared, and Cu(OH)2 nanorods are grown on its surface to construct the SC anode. This design results in a multi‐layered carbon fiber paper‐based electrode with a specific structure and enhanced capacitance. The Cu(OH)2@PCFP anode exhibits an areal capacitance of 547.83 mF cm−2 at a current density of 1 mA cm−2 and demonstrates excellent capacitance retention of 99.8% after 10 000 cycles. Theoretical calculations further confirm that the Cu(OH)2/OFGs‐graphite heterostructure exhibits higher conductivity, facilitating faster charge transfer. A solid‐state SC is successfully assembled using Ketjen Black@PCFP as the cathode and KOH/PVA as the gel electrolyte. The resulting device exhibits an energy density of 0.21 Wh cm−2 at 1.50 mW cm−2, surpassing the performance of reported Cu(OH)2 SCs. This approach, combining materials design with an understanding of underlying mechanisms, not only expands the range of electrode materials but also provides valuable insights for the development of high‐capacity energy storage devices.

Funder

National Natural Science Foundation of China

China Scholarship Council

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3