Affiliation:
1. Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
2. School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 P. R. China
3. School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
4. Rui'an Graduate College of Wenzhou University Wenzhou Zhejiang 325206 P. R. China
Abstract
AbstractWearable heaters with multifunctional performances are urgently required for the future personal health management. However, it is still challengeable to fabricate multifunctional wearable heaters simultaneously with flexibility, air‐permeability, Joule heating performance, electromagnetic shielding property, and anti‐bacterial ability. Herein, silver nanoparticles (AgNPs)@MXene heterostructure‐decorated graphite felts are fabricated by introducing MXene nanosheets onto the graphite felts via a simple dip‐coating method and followed by a facile in situ growth approach to grow AgNPs on MXene layers. The obtained AgNPs@MXene heterostructure decorated graphite felts not only maintain the intrinsic flexibility, air‐permeability and comfort characteristics of the matrixes, but also present excellent Joule heating performance including wide temperature range (30–128 °C), safe operating conditions (0.9–2.7 V), and rapid thermal response (reaching 128 °C within 100 s at 2.7 V). Besides, the multifunctional graphite felts exhibit excellent electromagnetic shielding effectiveness (53 dB) and outstanding anti‐bacterial performances (>95% anti‐bacterial rate toward Bacillus subtilis, Escherichia coli and Staphy‐lococcus aureus). This work sheds light on a novel avenue to fabricate multifunctional wearable heaters for personal healthcare and personal thermal management.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献