Synergistic Effect of Electron Scattering and Space Charge Transfer Enabled Unprecedented Room Temperature NO2 Sensing Response of SnO2

Author:

Zhang Yajie1,Jiang Yadong1,Yuan Zhen1,Liu Bohao1,Zhao Qiuni1,Huang Qi1,Li Ziteng2,Zeng Wen2,Duan Zaihua1,Tai Huiling1ORCID

Affiliation:

1. State Key Laboratory of Electronic Thin Films and Integrated Devices School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 610054 P. R. China

2. College of Materials Science and Engineering Chongqing University Chongqing 400030 P. R. China

Abstract

AbstractMetal oxide gas sensors have long faced the challenge of low response and poor selectivity, especially at room temperature (RT). Herein, a synergistic effect of electron scattering and space charge transfer is proposed to comprehensively improve gas sensing performance of n‐type metal oxides toward oxidizing NO2 (electron acceptor) at RT. To this end, the porous SnO2 nanoparticles (NPs) assembled from grains of about 4 nm with rich oxygen vacancies are developed through an acetylacetone‐assisted solvent evaporation approach combined with precise N2 and air calcinations. The results show that the as‐fabricated porous SnO2 NPs sensor exhibits an unprecedented NO2‐sensing performance, including outstanding response (Rg/Ra = 772.33 @ 5 ppm), fast recovery (<2 s), an extremely low detection limit (10 ppb), and exceptional selectivity (response ratio >30) at RT. Theoretical calculation and experimental tests confirm that the excellent NO2 sensing performance is mainly attributed to the unique synergistic effect of electron scattering and space charge transfer. This work proposes a useful strategy for developing high‐performance RT NO2 sensors using metal oxides, and provides an in‐depth understanding for the basic characteristics of the synergistic effect on gas sensing, paving the way for efficient and low power consumption gas detection at RT.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3