Amorphous Vanadium Oxide Nanosheets with Alterable Polyhedron Configuration for Fast‐Charging Lithium‐Ion Batteries

Author:

Wu Bei1,Niu Shuwen1,Wang Chao2,Wu Geng1,Zhang Yida12,Han Xiao1,Liu Peigen1,Lin Yue1,Yan Wensheng2,Wang Gongming1,Hong Xun1ORCID

Affiliation:

1. Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 23002 China

2. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230029 China

Abstract

AbstractTransition metal oxides with high theoretical capacities are promising anode materials for lithium‐ion batteries (LIBs). However, the sluggish reaction kinetics remain a bottleneck for fast‐charging applications due to its slow Li+ migration rate. Herein, a strategy is reported of significantly reducing the Li+ diffusion barrier of amorphous vanadium oxide by constructing a specific ratio of the VO local polyhedron configuration in amorphous nanosheets. The optimized amorphous vanadium oxide nanosheets with a ratio ≈1:4 for octahedron sites (Oh) to pyramidal sites (C4v) revealed by Raman spectroscopy and X‐ray absorption spectroscopy (XAS) demonstrate the highest rate capability (356.7 mA h g−1 at 10.0 A g−1) and long‐term cycling life (455.6 mA h g−1 at 2.0 A g−1 over 1200 cycles). Density functional theory (DFT)calculations further verify that the local structure (Oh:C4v = 1:4) intrinsically changes the degree of orbital hybridization between V and O atoms and contributes to a higher intensity of electron occupied states near the Fermi level, thus resulting in a low Li+ diffusion barrier for favorable Li+ transport kinetics. Moreover, the amorphous vanadium oxide nanosheets possess a reversible VO vibration mode and volume expansion rate close to 0.3%, as determined through in situ Raman and in situ transmission electron microscopy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3