Pd‐Doped Co3O4 Nanoarray for Efficient Eight‐Electron Nitrate Electrocatalytic Reduction to Ammonia Synthesis

Author:

Fan Xiaoya1,Liu Chaozhen2,Li Zixiao1,Cai Zhengwei3,Ouyang Ling1,Li Zerong1,He Xun1,Luo Yongsong1,Zheng Dongdong1,Sun Shengjun3,Wang Yan1,Ying Binwu1,Liu Qian4,Farouk Asmaa5,Hamdy Mohamed S.5,Gong Feng2,Sun Xuping13ORCID,Zheng Yinyuan6

Affiliation:

1. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu Sichuan 610054 China

2. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing Jiangsu 211189 China

3. College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong 250014 China

4. Institute for Advanced Study Chengdu University Chengdu Sichuan 610106 China

5. Department of Chemistry College of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia

6. Huzhou Key Laboratory of Translational Medicine First People's Hospital affiliated to Huzhou University Huzhou Zhejiang 313000 China

Abstract

AbstractAmmonia (NH3) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3) reduction reaction (NO3RR) is being explored as a promising strategy for green to synthesize industrial‐scale NH3, which has nonetheless involved complex multi‐reaction process. This work presents a Pd‐doped Co3O4 nanoarray on titanium mesh (Pd‐Co3O4/TM) electrode for highly efficient and selective electrocatalytic NO3RR to NH3 at low onset potential. The well‐designed Pd‐Co3O4/TM delivers a large NH3 yield of 745.6 µmol h−1 cm−2 and an extremely high Faradaic efficiency (FE) of 98.7% at −0.3 V with strong stability. These calculations further indicate that the doping Co3O4 with Pd improves the adsorption characteristic of Pd‐Co3O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn‐NO3 battery realizes a power density of 3.9 mW cm−2 and an excellent FE of 98.8% for NH3.

Funder

King Khalid University

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3