Affiliation:
1. School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
2. Department of Microtechnology and Nanoscience Chalmers University of Technology Gothenburg 412 96 Sweden
3. National Physical Laboratory Hampton Road Teddington TW11 0LW UK
4. Department of Physics Loughborough University Loughborough LE11 3TU UK
Abstract
Abstract2D semiconductors can drive advances in quantum science and technologies. However, they should be free of any contamination; also, the crystallographic ordering and coupling of adjacent layers and their electronic properties should be well‐controlled, tunable, and scalable. Here, these challenges are addressed by a new approach, which combines molecular beam epitaxy and in situ band engineering in ultra‐high vacuum of semiconducting gallium selenide (GaSe) on graphene. In situ studies by electron diffraction, scanning probe microscopy, and angle‐resolved photoelectron spectroscopy reveal that atomically‐thin layers of GaSe align in the layer plane with the underlying lattice of graphene. The GaSe/graphene heterostructure, referred to as 2semgraphene, features a centrosymmetric (group symmetry D3d) polymorph of GaSe, a charge dipole at the GaSe/graphene interface, and a band structure tunable by the layer thickness. The newly‐developed, scalable 2semgraphene is used in optical sensors that exploit the photoactive GaSe layer and the built‐in potential at its interface with the graphene channel. This proof of concept has the potential for further advances and device architectures that exploit 2semgraphene as a functional building block.
Funder
Engineering and Physical Sciences Research Council
Defence Science and Technology Laboratory