Robust and Flexible Rubber Composite with High Photothermal Properties Achieved by In Situ ZDMA Assisted Dispersion of Eumelanin and its Hydrophobic Photothermal Application

Author:

Li Luji1,Lin Zihao1,He Zehua1,Su Zexian1,Fu Lihua1,Xu Chuanhui1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Guangxi University No. 100, Daxuedong Road, Xixiangtang Nanning 530004 China

Abstract

AbstractEumelanin, a natural, biocompatible, and biodegradable photothermal agent derived from biomass, has attracted increasingly considerable attention due to its outstanding photothermal conversion efficiency. Unfortunately, its tendency to aggregate in flexible non‐polar polymers, owing to its abundant polar groups on the surface, severely restricted the application of eumelanin in photothermal composite field. Herein, a feasible strategy is proposed to disperse eumelanin in non‐polar rubber matrix via in situ generation of Zinc dimethacrylate (ZDMA). The graft‐polymerization of ZDMA promotes the interfacial compatibility between styrene butadiene rubber (SBR) and eumelanin, achieving a uniform dispersion of eumelanin in SBR. The rubber composite exhibits a considerable tensile strength of 11.4 MPa, acceptable elongation at break of 146%, and outstanding photothermal conversion efficiency of up to 75.2% with only 1 wt% of eumelanin. Furthermore, based on the easy‐processing of SBR matrix, the composite is treated with a sandpaper template technique and sprayed with trimethoxy(1H,1H,2H,2H‐perfluorodecyl)silane (PFDTMS) to endow the material with near superhydrophobicity (water contact angle of 147.9°) capacity. Hydrophobicity provides excellent icing resistance, with droplet surfaces extending more than twice as long to freeze. Moreover, this hydrophobic photothermal material exhibits remarkable anti‐frosting, de‐frosting, and de‐icing capabilities.

Funder

Natural Science Foundation of Guangxi Zhuang Autonomous Region

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3