Nonclassical Growth Mechanism of Double‐Walled Metal‐Oxide Nanotubes Implying Transient Single‐Walled Structures

Author:

Paineau Erwan1ORCID,Bourdelle Franck2,Bhandary Rajesh13,Truche Laurent4,Lorgeoux Catherine5,Bacia‐Verloop Maria6,Monet Geoffrey17,Rouzière Stéphan1,Vantelon Delphine8,Briois Valérie8,Launois Pascale1

Affiliation:

1. CNRS Laboratoire de Physique des Solides Université Paris‐Saclay Orsay 91405 France

2. GEC Laboratoire Géosciences & Environnement Cergy CY Cergy Paris Université Neuville‐sur‐Oise 95000 France

3. Macromolecular Chemistry Division of Technical and Macromolecular Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry Physics and Mathematics) Martin Luther University Halle‐Wittenberg von‐Danckelmann‐Platz 4 D‐06120 Halle Germany

4. CNRS ISTerre University Grenoble Alpes CS 40700 Grenoble 38058 France

5. GeoRessources UMR 7359 CNRS Université de Lorraine Campus Aiguillettes Vandœuvre‐lès‐Nancy 54506 France

6. Institut de Biologie Structurale CEA CNRS Université de Grenoble Alpes Grenoble 38027 France

7. Laboratoire de Physique de l'Ecole Normale Supérieure ENS Université PSL CNRS Sorbonne Université Université de Paris Paris F‐75005 France

8. Synchrotron SOLEIL L'Orme des Merisiers Gif‐sur‐Yvette Cedex 91192 France

Abstract

AbstractThe formation of imogolite nanotubes is reported to be a kinetic process involving intermediate roof‐tile nanostructures. Here, the structural evolution occurring during the synthesis of aluminogermanate double‐walled imogolite nanotubes is in situ monitored, thanks to an instrumented autoclave allowing the control of the temperature, the continuous measurement of pH and pressure, and the regular sampling of gas and solution. Chemical analyses confirm the completion of the precursor's conversion with the release of CO2, ethanol, and dioxane as main side products. The combination of microscopic observations, infrared, and absorption spectroscopies with small and wide‐angle X‐ray scattering experiments unravel a unique growth mechanism implying transient single‐walled nanotubes instead of the self‐assembly of stacked proto‐imogolite tiles. The growth formation of these transient nanotubes is followed at the molecular level by Quick‐X‐ray absoprtion specotrscopy experiments. Multivariate data analysis evidences that the near neighboring atomic environment of Ge evolves from monotonous to a more complex one as the reaction progresses. The following transformation into a double‐walled nanotube takes place at a nearly constant mean radius, as demonstrated by the simulation of X‐ray scattering diagrams. Overall, transient nanotubes appear to serve for the anchoring of a new wall, corresponding to a mechanism radically different from that proposed in the literature.

Funder

French Infrastructure for Integrated Structural Biology

European Synchrotron Radiation Facility

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3