Phosphorus‐Doped Nickel Oxide Micro‐Supercapacitor: Unleashing the Power of Energy Storage for Miniaturized Electronic Devices

Author:

Siddiqui Shumile Ahmed1,Das Subhabrata1,Rani Seema1,Afshan Mohd1,Pahuja Mansi1,Jain Ayushi1,Rani Daya1,Chaudhary Nikita1,Jyoti 1,Ghosh Rishita1,Riyajuddin Sk1,Bera Chandan1,Ghosh Kaushik1ORCID

Affiliation:

1. Institute of Nano Science & Technology Knowledge City Sector‐81, SAS Nagar Mohali Punjab 140306 India

Abstract

AbstractFor an uninterrupted self‐powered network, the requirement of miniaturized energy storage device is of utmost importance. This study explores the potential utilization of phosphorus‐doped nickel oxide (P‐NiO) to design highly efficient durable micro‐supercapacitors. The introduction of P as a dopant serves to enhance the electrical conductivity of bare NiO, leading to 11‐fold augmentation in volumetric capacitance to 841.92 Fcm−3 followed by significant enhancement of energy and power density from 6.71 to 42.096 mWhcm−3 and 0.47 to 1.046 Wcm−3, respectively. Theoretical calculations used to determine the adsorption energy of OH‐ ions, revealing higher in case of bare NiO (1.52 eV) as compared to phosphorus‐doped NiO (0.64 eV) leading to high electrochemical energy storage performance. The as‐designed micro‐supercapacitor (MSC) device demonstrates a facile integration with the photovoltaic system for renewable energy storage and smooth transfer to external loads for enlightening the blue LED for ≈1 min. The choice of P‐NiO/Ni not only contributes to cost reduction but also ensures minimal lattice mismatch at the interface facilitating high durability up to 15 K cycles along with capacitive retention of ≈100% and coulombic efficiency of 93%. Thus, the heterostructure unveils the possibilities of exploring miniaturized energy storage devices for portable electronics.

Funder

Department of Science and Technology, Government of Kerala

Institute of Nano Science and Technology

Ministry of Textiles, Government of India

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3