Enhancing Zinc Electrode Stability Through Pre‐Desolvation and Accelerated Charge Transfer via a Polyimide Interface for Zinc‐Ion Batteries

Author:

Lai Chi‐Yu1ORCID,Liao Yin‐Song2,Ku Hao‐Yu1,Jao Wen‐Yang1,Gull Sanna3,Chen Han‐Yi3ORCID,Chou Jyh‐Pin4ORCID,Hu Chi‐Chang1ORCID

Affiliation:

1. Department of Chemical Engineering National Tsing Hua University Hsinchu 300044 Taiwan

2. Tsing Hua Interdisciplinary Program National Tsing Hua University Hsinchu 300044 Taiwan

3. Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300044 Taiwan

4. Department of Physics National Changhua University of Education Changhua 50074 Taiwan

Abstract

AbstractAqueous zinc‐based energy storage devices possess superior safety, cost‐effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre‐desolvation process, effectively desolvating hydrated zinc ions from Zn(H2O)62+ to Zn(H2O)42+ before approaching the zinc surface. The exposed zinc ion in Zn(H2O)42+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol−1. The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI‐Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite‐free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm−2, 10 mAh cm−2) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI‐Zn||AC hybrid zinc‐ion capacitor and PI‐Zn||MnVOH@SWCNT zinc‐ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high‐performance zinc metal electrodes.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3