Enhancing the Output Performance of Triboelectric Nanogenerator Through Regulation of its Internal Nano‐Architecture

Author:

Li Jiawei1,Peng Yating12,Wang Peng12ORCID,Wang Congyu12,Zhang Jun3,Xiang Tengfei4,Yao Shengxun5,Zhang Dun12

Affiliation:

1. Key Laboratory of Marine Environmental Corrosion and Bio‐fouling Institute of Oceanology Chinese Academy of Sciences Qingdao 266071 China

2. University of Chinese Academy of Science Beijing 100049 China

3. School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China

4. School of Architectural and Civil Engineering Anhui University of Technology Ma'anshan 243002 China

5. Institute of Marine Corrosion Protection Guangxi Key Laboratory of Marine Environmental Science Guangxi Academy of Marine Sciences Guangxi Academy of Sciences Nanning 530007 China

Abstract

AbstractTriboelectric Nanogenerator (TENG) has proven highly effective in converting mechanical energy into electrical energy. Previous research on manipulating microstructure for performance enhancement primarily focused on the surface of TENGs. In this study, an innovative bottom–up strategic design to control the internal nano‐architecture for the enhanced output of TENG is proposed. This multiscale structural design strategy consists of defect chemistry (angstrom‐scale), surface modification (nano‐scale), and spatial regulation of nanoparticles (meso‐scale), which helps explore the optimal utilization of TENG's internal structure. After fine‐tuning the nano‐architecture, the output voltage is significantly increased. This optimized TENG serves as a robust platform for developing self‐powered systems, including self‐powered electrochemical chlorination systems for sterilization. Additionally, through the utilization of multiscale simulations (density functional theory, all‐atom molecular dynamics, and dissipative particle dynamics), the underlying mechanisms governing how the optimized nanoparticle–polymer interface and spatial arrangement of nanoparticles influence the storage and transfer of charges are comprehensively elucidated. This study not only demonstrates the effectiveness of manipulating internal nano‐architecture to enhance TENG performance for practical applications but also provides invaluable insights into structural engineering for TENG advancement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in liquid-solid triboelectric nanogenerators and its applications;Journal of Materials Science & Technology;2025-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3