CuC(O) Interfaces Deliver Remarkable Selectivity and Stability for CO2 Reduction to C2+ Products at Industrial Current Density of 500 mA cm−2

Author:

Du Ruian1ORCID,Wu Qiqi1ORCID,Zhang Shiyi1,Wang Peng1ORCID,Li Zhengjian1,Qiu Yongcai1ORCID,Yan Keyou1ORCID,Waterhouse Geoffrey I. N.2,Wang Pei3,Li Jia4,Zhao Yun1ORCID,Zhao Wei‐Wei5ORCID,Wang Xue6ORCID,Chen Guangxu1ORCID

Affiliation:

1. School of Environment and Energy State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control South China University of Technology Guangzhou Guangdong 510006 P. R. China

2. School of Chemical Sciences The University of Auckland Auckland 1142 Auckland 510640 New Zealand

3. College of Science Huazhong Agricultural University Wuhan 430074 P. R. China

4. School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China

5. School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 P. R. China

6. School of Energy and Environment City University of Hong Kong Hong Kong 999077 P. R. China

Abstract

AbstractThe electrocatalytic CO2 reduction reaction (CO2RR) is an attractive technology for CO2 valorization and high‐density electrical energy storage. Achieving a high selectivity to C2+ products, especially ethylene, during CO2RR at high current densities (>500 mA cm−2) is a prized goal of current research, though remains technically very challenging. Herein, it is demonstrated that the surface and interfacial structures of Cu catalysts, and the solid–gas–liquid interfaces on gas‐diffusion electrode (GDE) in CO2 reduction flow cells can be modulated to allow efficient CO2RR to C2+ products. This approach uses the in situ electrochemical reduction of a CuO nanosheet/graphene oxide dots (CuOC(O)) hybrid. Owing to abundant CuOC interfaces in the CuOC(O) hybrid, the CuO nanosheets are topologically and selectively transformed into metallic Cu nanosheets exposing Cu(100) facets, Cu(110) facets, Cu[n(100) × (110)] step sites, and Cu+/Cu0 interfaces during the electroreduction step, the faradaic efficiencie (FE) to C2+ hydrocarbons was reached as high as 77.4% (FEethylene ≈ 60%) at 500 mA cm−2 . In situ infrared spectroscopy and DFT simulations demonstrate that abundant Cu+ species and Cu0/Cu+ interfaces in the reduced CuOC(O) catalyst improve the adsorption and surface coverage of *CO on the Cu catalyst, thus facilitating CC coupling reactions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3