Disentangling the Role of the SnO Layer on the Pyro‐Phototronic Effect in ZnO‐Based Self‐Powered Photodetectors

Author:

Vieira Eliana M. F.12ORCID,Silva José P. B.34,Gwozdz Katarzyna5,Kaim Adrian5,Gomes Nuno M.12,Chahboun Adil6,Gomes Maria J. M.34,Correia José H.12

Affiliation:

1. CMEMS – UMinho University of Minho Campus de Azurem Guimarães 4804‐533 Portugal

2. LABBELS –Associate Laboratory Braga Guimarães Portugal

3. Physics Center of Minho and Porto Universities (CF‐UM‐UP) University of Minho Campus de Gualtar Braga 4710‐057 Portugal

4. Laboratory of Physics for Materials and Emergent Technologies LapMET University of Minho Braga 4710‐057 Portugal

5. Department of Quantum Technologies Wroclaw University of Science and Technology Wroclaw 50–370 Poland

6. Université Abdelmalek Essaadi FST Tanger Laboratoire Couches Minces et Nanomatériaux (CMN) Tanger 90000 Morocco

Abstract

AbstractSelf‐powered photodetectors (PDs) have been recognized as one of the developing trends of next‐generation optoelectronic devices. Herein, it is shown that by introducing a thin layer of SnO film between the Si substrate and the ZnO film, the self‐powered photodetector Al/Si/SnO/ZnO/ITO exhibits a stable and uniform violet sensing ability with high photoresponsivity and fast response. The SnO layer introduces a built‐in electrostatic field to highly enhance the photocurrent by over 1000%. By analyzing energy diagrams of the p‐n junction, the underlying physical mechanism of the self‐powered violet PDs is carefully illustrated. A high photo‐responsivity (R) of 93 mA W−1 accompanied by a detectivity (D*) of 3.1 × 1010 Jones are observed under self‐driven conditions, when the device is exposed to 405 nm excitation laser wavelength, with a laser power density of 36 mW cm−2 and at a chopper frequency of 400 Hz. The Si/SnO/ZnO/ITO device shows an enhancement of 3067% in responsivity when compared to the Al/Si/ZnO/ITO. The photodetector holds an ultra‐fast response of ≈ 2 µs, which is among the best self‐powered photodetectors reported in the literature based on ZnO.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3