Low‐cost BPO4 In Situ Synthetic Li3PO4 Coating and B/P‐Doping to Boost 4.8 V Cyclability for Sulfide‐Based All‐Solid‐State Lithium Batteries

Author:

Shi Jie1,Ma Zhihui1,Wu Di1,Yu Yue1,Wang Zhen1,Fang Yixing1,Chen Dishuang1,Shang Shuai1,Qu Xuanhui1,Li Ping12ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 P. R. China

2. Shanxi Beike Qiantong Energy Storage Science and Technology Research Institute Co. Ltd Gaoping 048400 P. R. China

Abstract

AbstractStructural damage of Ni‐rich layered oxide cathodes such as LiNi0.8Co0.1Mn0.1O2 (NCM811) and serious interfacial side reactions and physical contact failures with sulfide electrolytes (SEs) are the main obstacles restricting ≥4.6 V high‐voltage cyclability of all‐solid‐state lithium batteries (ASSLBs). To tackle this constraint, here, a modified NCM811 with Li3PO4 coating and B/P co‐doping using inexpensive BPO4 as raw materials via the one‐step in situ synthesis process is presented. Phosphates have good electrochemical stability and contain the same anion (O2−) and cation (P5+) as in cathode and SEs, respectively, thus Li3PO4 coating precludes interfacial anion exchange, lessening side reactivity. Based on the high bond energy of B─O and P─O, the lattice O and crystal texture of NCM811 can be stabilized by B3+/P5+ co‐doping, thereby suppressing microcracks during high‐voltage cycling. Therefore, when tested in combination with Li─In anode and Li6PS5Cl solid electrolytes (LPSCl), the modified NCM811 exhibits extraordinary performance, with 200.36 mAh g−1 initial discharge capacity (4.6 V), cycling 2300 cycles with decay rate as low as 0.01% per cycle (1C), and 208.26 mAh g−1 initial discharge capacity (4.8 V), cycling 1986 cycles with 0.02% per cycle decay rate. Simultaneously, it also has remarkable electrochemical abilities at both −20 °C and 60 °C.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3