Oxygen Vacancy Engineering and Constructing Built‐In Electric Field in Fe‐g‐C3N4/Bi2MoO6 Z‐Scheme Heterojunction for Boosting Photo‐Fenton Catalytic Degradation Performance of Tetracycline

Author:

Wang Zhanshou1,Meng Shuang12,Li Jinlong12,Guo Dongxuan12,Fu Shanshan12,Zhang Dantong123,Yang Xue12,Sui Guozhe12ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Qiqihar University Qiqihar 161006 P. R. China

2. Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals Qiqihar University Qiqihar 161006 P. R. China

3. Multiscale Crystal Materials Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

Abstract

AbstractA novel Fe‐g‐C3N4/Bi2MoO6 (FCNB) Z‐scheme heterojunction enriched with oxygen vacancy is constructed and employed for the photo‐Fenton degradation of tetracycline (TC). The 2% FCNB demonstrates prominent catalytic performance and mineralization efficiency for TC wastewater, showing activity of 8.20 times greater than that of pure photocatalytic technology. Density‐functional theory (DFT) calculations and degradation experiments confirm that the formation of Fe‐N4 sites induces spin‐polarization in the material, and the difference in Fermi energy levels results in the formation of built‐in electric field at the contact interface, which facilitates the continuous generation and migration of photogenerated carriers to address the issue of insufficient cycling power of Fe (III)/Fe (II).The reactive radicals persistently target the extremely reactive sites anticipated by the Fukui function, causing the mineralization of TC molecules into “non‐toxic” compounds through processes of hydroxylation, demethylation, and deamidation. This work holds significant importance in the domain of eliminating organic pollutants from water.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3