Understanding the Insight Mechanism of Chemical‐Mechanical Degradation of Layered Co‐Free Ni‐Rich Cathode Materials: A Review

Author:

Li Hang12,Wang Li2,Song Youzhi2,Wu Yingqiang2,Zhang Hao2,Du Aimin1,He Xiangming2ORCID

Affiliation:

1. School of Automotive Studies Tongji University Shanghai 201804 China

2. Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China

Abstract

AbstractLayered Cobalt (Co)‐free Nickel (Ni)‐rich cathode materials have attracted much attention due to their high energy density and low cost. Still, their further development is hampered by material instability caused by the chemical/mechanical degradation of the material. Although there are numerous doping and modification approaches to improve the stability of layered cathode materials, these approaches are still in the laboratory stage and require further research before commercial application. To fully exploit the potential of layered cathode materials, a more comprehensive theoretical understanding of the underlying issues is necessary, along with active exploration of previously unrevealed mechanisms. This paper presents the phase transition mechanism of Co‐free Ni‐rich cathode materials, the existing problems, and the state‐of‐the‐art characterization tools employed to study the phase transition. The causes of crystal structure degradation, interfacial instability, and mechanical degradation are elaborated, from the material's crystal structure to its phase transition and atomic orbital splitting. By organizing and summarizing these mechanisms, this paper aims to establish connections among common research problems and to identify future research priorities, thereby facilitating the rapid development of Co‐free Ni‐rich materials.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Tsinghua National Laboratory for Information Science and Technology

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3