Highly Anisotropic Thermally Conductive Dielectric Polymer/Boron Nitride Nanotube Composites for Directional Heat Dissipation

Author:

Zandieh Azadeh1ORCID,Buahom Piyapong1ORCID,Baradaran Shokouhi Elnaz12ORCID,Mark Lun Howe1ORCID,Rahmati Reza1ORCID,Aghababaei Tafreshi Omid1ORCID,Hamidinejad Mahdi3ORCID,Mandelis Andreas12ORCID,Kim Keun Su14ORCID,Park Chul B.1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering University of Toronto Toronto ON M5S 3G8 Canada

2. Center for Advanced Diffusion‐Wave and Photoacoustic Technologies and Institute for Advanced Non‐Destructive and Non‐Invasive Diagnostic Technologies University of Toronto Toronto ON M5S 3G8 Canada

3. Department of Mechanical Engineering University of Alberta 9211‐116 Street NW Edmonton AB T6G1H9 Canada

4. Quantum and Nanotechnologies Research Centre National Research Council Canada Ottawa ON K1A 0R6 Canada

Abstract

AbstractAn ideal dielectric material for microelectronic devices requires a combination of high anisotropic thermal conductivity and low dielectric constant (ɛ′) and loss (tan δ). Polymer composites of boron nitride nanotubes (BNNTs), which offer excellent thermal and dielectric properties, show promise for developing these dielectric polymer composites. Herein, a simple method for fabricating polymer/BNNT composites with high directional thermal conductivity and excellent dielectric properties is presented. The nanocomposites with directionally aligned BNNTs are fabricated through melt‐compounding and in situ fibrillation, followed by sintering the fibrous nanocomposites. The fabricated nanocomposites show a significant enhancement in thermal properties, with an in‐plane thermal conductivity (K) of 1.8 Wm−1K−1—a 450% increase—yielding a high anisotropy ratio (K/K) of 36, a 1700% improvement over isotropic samples containing only 7.2 vol% BNNT. These samples exhibit a 120% faster in‐plane heat dissipation compared to the through‐plane within 2 s. Additionally, they display low ɛ′ of ≈3.2 and extremely low tan δ of ≈0.014 at 1 kHz. These results indicate that this method provides a new avenue for designing and creating polymer composites with enhanced directional heat dissipation properties along with high K, suitable for thermal management applications in electronic packaging, thermal interface materials, and passive cooling systems.

Funder

Air Force Office of Scientific Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3