Synergistic π‐Conjugation Organic Cathode for Ultra‐Stable Aqueous Aluminum Batteries

Author:

Su Jingwen1ORCID,Zhang Meng2ORCID,Tian Hao2ORCID,Han Mingshan1ORCID,Sun Zhaopeng2ORCID,Du Kai1ORCID,Cui Fangyan1ORCID,Li Jingzhen3ORCID,Huang Weiwei2ORCID,Hu Yuxiang1ORCID

Affiliation:

1. Key Laboratory of Advanced Functional Materials Ministry of Education College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China

2. Hebei Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China

3. Key Laboratory of Optoelectronics Technology Ministry of Education Faculty of Information Technology Beijing University of Technology Beijing 100124 China

Abstract

AbstractRechargeable aqueous aluminum batteries (AABs) are promising energy storage technologies owing to their high safety and ultra‐high energy‐to‐price ratio. However, either the strong electrostatic forces between high‐charge‐density Al3+ and host lattice, or sluggish large carrier‐ion diffusion toward the conventional inorganic cathodes generates inferior cycling stability and low rate‐capacity. To overcome these inherent confinements, a series of promising redox‐active organic materials (ROMs) are investigated and a π‐conjugated structure ROMs with synergistic C═O and C═N groups is optimized as the new cathode in AABs. Benefiting from the joint utilization of multi‐redox centers and rich π–π intermolecular interactions, the optimized ROMs with unique ion coordination storage mechanism facilely accommodate complex active ions with mitigated coulombic repulsion and robust lattice structure, which is further validated via theoretical simulations. Thus, the cathode achieves enhanced rate performance (153.9 mAh g−1 at 2.0 A g−1) and one of the best long‐term stabilities (125.7 mAh g−1 after 4,000 cycles at 1.0 A g−1) in AABs. Via molecular exploitation, this work paves the new direction toward high‐performance cathode materials in aqueous multivalent‐ion battery systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3