How Size and Strain Effect Synergistically Improve Electrocatalytic Activity: A Systematic Investigation Based on PtCoCu Alloy Nanocrystals

Author:

Zhang Wenjing1,Li Jing1,Wei Zidong1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Road 55 Chongqing 401331 China

Abstract

AbstractTo reveal how the size effect and strain effect synergistically regulate the mass activity (MA) and specific activity (SA) of Pt alloy nanocrystal catalysts in oxygen reduction reaction (ORR), remains to be difficult due to the highly entangled factors. In this work, six ternary PtCoCu catalysts with sequentially changed composition, size, and compression strain are prepared. It is found that the smaller the alloy particles, the higher the electrochemical active surface area (ECSA) and MA values, that is, the particle size plays a decisive role in the size of the ECSA and MA. While, along alloy size decrease, the intrinsic activity SA first increases, then remains unchanged, and finally rapidly increases again. This detailed analysis shows that for the alloys above 4 nm, it is the surface coordination number that decides the SA, while for those below 4 nm, it is the well‐regulated compression strain that determines the SA. Particularly, Pt47Co26Cu27 demonstrates the MA of 1.19 A mgPt−1 and SA of 1.48 mA cm−2, being 7.9 and 6.4 times those of commercial Pt/C respectively, representing an especially superior ORR catalyst.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3