DL‐Serine Hydrazide Hydrochloride Multiple‐site Synergy Induced Effective and Stable Formamidine‐Rich Perovskite Solar Cells

Author:

Gong Xiaoli1,He Aoxi1,Tang Peng2,Hao Xia1,Wu Lili1,Wang Wenwu1,Zhang Jingquan1ORCID

Affiliation:

1. College of Materials Science and Engineering & Institute of New Energy and Low‐carbon Technology Sichuan University Chengdu 610064 P. R. China

2. Chengdu Textile College Chengdu 611731 P. R. China

Abstract

AbstractThe efficiency and stability of solar cells are two key indicators that determine for the commercial feasibility of photovoltaic devices. Formamidine‐cesium perovskite has been extensively investigated since its excellent thermal stability and has great potential in achieving high power conversion efficiency. However, during the aging process, especially under light conditions, formamidine‐rich perovskites are prone to produce iodine, and the escape of iodine is one of the important factors leading to device degradation. Here, DL‐Serine Hydrazide Hydrochloride containing the reducing group is introduced into the precursor solution of formamidine‐cesium perovskite, which achieves multiple‐site passivation. Hydrazine reacts with iodine to reduce it to iodine ions, inhibiting the escape of iodine. In addition, carbonyl groups and uncoordinated lead ions form coordination bonds to reduce defects. In the end, the perovskite solar cell with DL‐Serine Hydrazide Hydrochloride added achieves a champion efficiency of 22.22%, and maintains 85.88% of the initial efficiency after continuous exposure under 1 sun for 7000 s at a relative humidity of ≈40%. Additionally, DL‐Serine Hydrazide Hydrochloride added device shows good stability in air environments with relative humidity of 50%–60%. DL‐Serine Hydrazide Hydrochloride improves the stability of formamidine‐rich perovskite solar cells and provides a low‐cost strategy for commercial development.

Funder

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3