Enhanced HER Efficiency of Monolayer MoS2 via S Vacancies and Nano‐Cones Array Induced Strain Engineering

Author:

Liu Xiao1,Li Zeqi1,Jiang Huili1,Wang Xin2,Xia Pufeihong1,Duan Zhuojun1,Ren Yizhang1,Xiang Haiyan1,Li Huimin1,Zeng Jiang2,Zhou Yige1,Liu Song13ORCID

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China

2. Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 P. R. China

3. Research Institute of Hunan University in Chongqing Chongqing 401151 P. R. China

Abstract

AbstractMolybdenum disulfide (MoS2) has gained significant attention as a promising catalyst for hydrogen evolution reaction (HER). The catalytic performance of MoS2 can be enhanced by either altering its structure or regulating external conditions. In this study, a novel approach combining the introduction of sulfur vacancy (VS) and biaxial tensile strain to create more active sites and modulate the band structure of monolayer MoS2 is proposed. To achieve the desired strain level, nano‐cones (NCs) array substrates facilely fabricated by dip‐pen nanolithography (DPN) are employed. The magnitude of the applied tensile strain can be finely tuned via adjusting the height of the NCs. Furthermore, on‐chip electrochemical devices are constructed based on artificial structures, enabling precise optimization of HER performance of MoS2 through the synergistic effect of VS and strain. Combined with the d‐band theory, it reveals that the HER properties of VS‐MoS2 are highly dependent on the degree of tensile strain. This study presents a promising avenue for the design and preparation of high‐performance 2D catalysts for energy conversion and storage applications.

Funder

Natural Science Foundation of Chongqing Municipality

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3