Liquid Metal‐Enabled Tunable Synthesis of Nanoporous Polycrystalline Copper for Selective CO2‐to‐Formate Electrochemical Conversion

Author:

Zhong Wenyu1,Chi Yuan1,Yu Ruohan1,Kong Charlie2,Zhou Shujie1,Han Chen1,Vongsvivut Jitraporn3,Mao Guangzhao1,Kalantar‐Zadeh Kourosh14,Amal Rose1,Tang Jianbo1,Lu Xunyu1ORCID

Affiliation:

1. School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia

2. Electron Microscope Unit University of New South Wales Sydney NSW 2052 Australia

3. Infrared Microspectroscopy (IRM) Beamline ANSTO‐Australian Synchrotron Clayton VIC 3168 Australia

4. School of Chemical and Biomolecular Engineering University of Sydney Darlington NSW 2008 Australia

Abstract

AbstractCopper‐based catalysts exhibit high activity in electrochemical CO2 conversion to value‐added chemicals. However, achieving precise control over catalysts design to generate narrowly distributed products remains challenging. Herein, a gallium (Ga) liquid metal‐based approach is employed to synthesize hierarchical nanoporous copper (HNP Cu) catalysts with tailored ligament/pore and crystallite sizes. The nanoporosity and polycrystallinity are generated by dealloying intermetallic CuGa2 formed after immersing pristine Cu foil in liquid Ga in a basic or acidic solution. The liquid metal‐based approach allows for the transformation of monocrystalline Cu to the polycrystalline HNP Cu with enhanced CO2 reduction reaction (CO2RR) performance. The dealloyed HNP Cu catalyst with suitable crystallite size (22.8 nm) and nanoporous structure (ligament/pore size of 45 nm) exhibits a high Faradaic efficiency of 91% toward formate production under an applied potential as low as −0.3 VRHE. The superior CO2RR performance can be ascribed to the enlarged electrochemical catalytic surface area, the generation of preferred Cu facets, and the rich grain boundaries by polycrystallinity. This work demonstrates the potential of liquid metal‐based synthesis for improving catalysts performance based on structural design, without increasing compositional complexity.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3