Anisotropic Amorphization and Phase Transition in Na2Ti3O7 Anode Caused by Electron Beam Irradiation

Author:

Cheng Lixun1,Shen Yaoling2,Nan Pengfei1,Wu Chuanqiang1,Tai Yilin1,Luo Xiaonan3,Zhang YongSheng4,Ge Binghui1ORCID

Affiliation:

1. Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China

2. Key Laboratory of Materials Physics Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China

3. No.2 Xingang Road, Zhangwan Town, Jiaocheng District Ningde Fujian Province 352000 China

4. Advanced Research Institute of Multidisciplinary Sciences Qufu Normal University Qufu Shandong Province 273165 China

Abstract

AbstractNa2Ti3O7 is considered one of the most promising anode materials for sodium ion batteries due to its superior safety, environmental friendliness, and low manufacturing cost. However, its structural stability and reaction mechanism still have not been fully explored. As the electron beam irradiation introduces a similar impact on the Na2Ti3O7 anode as the extraction of Na+ ions during the battery discharge process, the microstructure evolution of the materials is investigated by advanced electron microscopy techniques at the atomic scale. Anisotropic amorphization is successfully observed. Through the integrated differential phase contrast‐scanning transmission electron microscopy technique and density functional theory calculation, a phase transition pathway involving a new phase, Na2Ti24O49, is proposed with the reduction of Na atoms. Additionally, it is found that the amorphization is dominated by the surface energy and electron dose rate. These findings will deepen the understanding of structural stability and deintercalation mechanism of the Na2Ti3O7 anode, providing new insight into exploring the failure mechanism of electrode materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3