Sequentially Controlled Recognition of Different Proteins Using Programmable Protein Imprinted Nanospheres

Author:

Wang Mingqi1,Fa Shixin1ORCID,Zhang Guoxian1,Yu Jiate1,Zhang Qiuyu1ORCID

Affiliation:

1. Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractAlthough protein imprinted materials with multiple templates are developed to selectively separate different proteins, it is difficult to achieve the programmed adsorption and separation of different proteins using one material, because the available protein imprinted materials are constructed through irreversible crosslinking and their structures are unprogrammable and non‐reconstructive. Herein, a novel nanosphere (MS@PTL‐g‐PNIPAM) is designed, which not only is temperature and pH responsive but also can dynamically reversibly crosslink/de‐crosslink under ultraviolet light of different wavelengths. With the help of the dynamically reversible photo‐crosslinking, the nanospheres can be repeatedly programmed into protein imprinted nanospheres toward different target proteins. Moreover, the prepared imprinted nanospheres can easily achieve the controlled rebinding and release of target proteins, benefiting from the introduced temperature‐ and pH‐responsive moieties. As a consequence, this study realizes the specific separation of different target proteins from protein mixture and the real bovine blood sequentially by programming one material. It is resource saving, time saving, recyclable, and it will provide convenience for protein imprinted materials to use in the blood purification, drug delivery, and virus detection.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3