Novel Bilayer SnO2 Electron Transport Layers with Atomic Layer Deposition for High‐Performance α‐FAPbI3 Perovskite Solar Cells

Author:

Zhang Xuecong1,Zhou Yan1,Chen Muyang1,Wang Dianxi1,Chao Lingfeng1,Lv Yifan1,Zhang Hui1,Xia Yingdong1,Li Mingjie23,Hu Zhelu1ORCID,Chen Yonghua14

Affiliation:

1. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) School of Flexible Electronics (Future Technologies) Nanjing Tech University Nanjing 211816 China

2. Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong 999077 China

3. Shenzhen Research Institute The Hong Kong Polytechnic University Shenzhen Guangdong 518057 China

4. Optics Valley Laboratory Wuhan 430074 China

Abstract

AbstractPerovskite solar cells (PSCs) based on the SnO2 electron transport layer (ETL) have achieved remarkable photovoltaic efficiency. However, the commercial SnO2 ETLs show various shortcomings. The SnO2 precursor is prone to agglomeration, resulting in poor morphology with numerous interface defects. Additionally, the open circuit voltage (Voc) would be constrained by the energy level mismatch between the SnO2 and the perovskite. And, few studies designed SnO2‐based ETLs to promote crystal growth of PbI2, a crucial prerequisite for obtaining high‐quality perovskite films via the two‐step method. Herein, we proposed a novel bilayer SnO2 structure that combined the atomic layer deposition (ALD) and sol‐gel solution to well address the aforementioned issues. Due to the unique conformal effect of ALD‐SnO2, it can effectively modulate the roughness of FTO substrate, enhance the quality of ETL, and induce the growth of PbI2 crystal phase to develop the crystallinity of perovskite layer. Furthermore, a created built‐in field of the bilayer SnO2 can help to overcome the electron accumulation at the ETL/perovskite interface, leading to a higher Voc and fill factor. Consequently, the efficiency of PSCs with ionic liquid solvent increases from 22.09% to 23.86%, maintaining 85% initial efficiency in a 20% humidity N2 environment for 1300 h.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3