Interlayer Entropy Engineering Inducing the Symmetry‐Broken Layered Oxide Cathodes to Activate Reversible High‐Voltage Redox Reaction

Author:

Zhang Jianhua1,Li Wenbin1,Yang Jiayi2,Wang Jingjing1,Dong Qi1,Wang Xiyu1,Wu Yumei1,Ren Yang2,Li Xifei13ORCID

Affiliation:

1. Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering Xi'an University of Technology Xi'an Shaanxi 710048 P. R. China

2. Department of Physics City University of Hong Kong Hong Kong 999077 P. R. China

3. Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology Qinghai Minzu (Nationalities) University Xining 810007 P. R. China

Abstract

AbstractThe as‐reported doping entropy engineering of electrode materials that are usually realized by the sharing of multiple metal elements with the metal element from the lattice body, potentially has three shortages of stringent synthesis conditions, large active element loss, and serious lattice distortion. Herein, an interlayer entropy engineering of layered oxide cathodes is proposed, where the multiple metal ions are simultaneously intercalated into the same interlayer sites, thus avoiding the three shortages. Concretely, a novel interlayer medium‐entropy V2O5 ((MnCoNiMgZn)0.26V2O5∙0.84H2O) is successfully constructed by a one‐step hydrothermal method. The interlayer medium‐entropy effect is revealed to be that five metal ions pre‐intercalation induces the local symmetry‐broken [VO6] octahedra in bilayer V2O5, thus activating the reversible high‐voltage redox reaction, inhibiting the layer slip and following phase transformation by its pinning effect, and enhancing the charge transfer kinetics. As a result, the medium‐entropy cathode realizes the trade‐off between specific capacity and structural stability with a discharge capacity of 152 mAh g−1 at 0.1 A g−1 after 100 cycles, and a capacity retention rate of 98.7% at 0.5 A g−1 after 150 cycles for Li+ storage. This engineering provides a new guideline for the rational design of high‐performance layered oxide cathodes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Education Department of Shaanxi Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3