Solar‐CO2‐to‐Syngas Conversion Enabled by Precise Charge Transport Modulation

Author:

Mo Qiao‐Ling1ORCID,Xu Shu‐Ran1,Li Jia‐Le1,Shi Xiao‐Qiang1,Wu Yue1,Xiao Fang‐Xing12ORCID

Affiliation:

1. College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian Province 350108 China

2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China

Abstract

AbstractThe rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2‐to‐fuel conversion. Despite the progress made in crafting high‐performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one‐pot method is developed to achieve in situ self‐assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non‐conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self‐assembled TMCs@bPEI@Pd heterostructure with bi‐directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2‐to‐syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron‐withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in‐depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi‐component heterojunction photosystem for solar‐to‐fuel energy conversion.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3