Affiliation:
1. School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
2. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
Abstract
AbstractRechargeable sodium ion batteries (SIBs) have promising applications in large‐scale energy storage systems. Iron‐based Prussian blue analogs (PBAs) are considered as potential cathodes owing to their rigid open framework, low‐cost, and simple synthesis. However, it is still a challenge to increase the sodium content in the structure of PBAs and thus suppress the generation of defects in the structure. Herein, a series of isostructural PBAs samples are synthesized and the isostructural evolution of PBAs from cubic to monoclinic after modifying the conditions is witnessed. Accompanied by, the increased sodium content and crystallinity are discovered in PBAs structure. The as‐obtained sodium iron hexacyanoferrate (Na1.75Fe[Fe(CN)6]0.9743·2.76H2O) exhibits high charge capacity of 150 mAh g−1 at 0.1 C (17 mA g−1) and excellent rate performance (74 mAh g−1 at 50 C (8500 mA g−1)). Moreover, their highly reversible Na+ ions intercalation/de‐intercalation mechanism is verified by in situ Raman and Powder X‐ray diffraction (PXRD) techniques. More importantly, the Na1.75Fe[Fe(CN)6]0.9743·2.76H2O sample can be directly assembled in a full cell with hard carbon (HC) anode and shows excellent electrochemical performances. Finally, the relationship between PBAs structure and electrochemical performance is summarized and prospected.
Funder
National Natural Science Foundation of China
Shanghai University
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献