Induced Production of Atypical Naturally Nonpreferred Metal–Organic Frameworks and Their Detachment via Provoking Post‐Mismatching

Author:

Lee Sujeong1,Lee Gihyun1,Oh Moonhyun1ORCID

Affiliation:

1. Department of Chemistry Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea

Abstract

AbstractThe structures of metal–organic frameworks (MOFs) are typically determined by the building blocks that compose them and the conditions under which they are formed. MOFs tend to adopt a thermodynamically and/or kinetically stable structure (naturally preferred form). Thus, constructing MOFs with naturally nonpreferred structures is a challenging task, as it requires avoiding the easier pathway toward a naturally preferred MOF. Herein, an approach to construct naturally nonpreferred dicarboxylate‐linked MOFs employing reaction templates is reported. This strategy relies on the registry between the surface of the template and the cell lattice of a target MOF, which reduces the effort required to form naturally nonpreferred MOFs. Reactions of p‐block trivalent metal ions (Ga3+ and In3+) with dicarboxylic acids typically produce preferred MIL‐53 or MIL‐68. However, the surface of UiO‐67 (and UiO‐66) template exhibits the well‐defined hexagonal lattice, which induce the selective formation of a naturally nonpreferred MIL‐88 structure. Inductively grown MIL‐88s are purely isolated from the template via provoking a post‐mismatch in their lattices and weakening the interfacial interaction between product and template. It is also discovered that an appropriate template for effective induced production of naturally nonpreferred MOFs shall be properly selected based on the cell lattice of a target MOF.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3