Deciphering Sodium‐Ion Storage: 2D‐Sulfide versus Oxide Through Experimental and Computational Analyses

Author:

Sengupta Shilpi1,Pramanik Atin2ORCID,de Oliveira Caique Campos3,Chattopadhyay Shreyasi2,Pieshkov Tymofii2,Autreto Pedro Alves da Silva3,Ajayan Pulickel M.2ORCID,Kundu Manab14

Affiliation:

1. Electrochemical Energy Storage Laboratory Department of Chemistry SRM Institute of Science and Technology Tamil Nadu 603203 India

2. Department of Materials Science and Nano Engineering Rice University Houston Texas 77005 USA

3. Center for Human and Natural Sciences (CCNH) Federal University of ABC (UFABC) Avenida dos Estados 5000, Santo André São Paulo Brazil

4. Nanomaterials for Energy Storage and Conversion INL International Iberian Nanotechnology Laboratory Av. Mestre José Veiga Braga 4715‐330 Portugal

Abstract

AbstractTransition metal derivatives exhibit high theoretical capacity, making them promising anode materials for sodium‐ion batteries. Sulfides, known for their superior electrical conductivity compared to oxides, enhance charge transfer, leading to improved electrochemical performance. Here, a hierarchical WS2 micro‐flower is synthesized by thermal sulfurization of WO3. Comprising interconnected thin nanosheets, this structure offers increased surface area, facilitating extensive internal surfaces for electrochemical redox reactions. The WS2 micro‐flower demonstrates a specific capacity of ≈334 mAh g−1 at 15 mA g−1, nearly three times higher than its oxide counterpart. Further, it shows very stable performance as a high‐temperature (65 °C) anode with ≈180 mAh g−1 reversible capacity at 100 mA g−1 current rate. Post‐cycling analysis confirms unchanged morphology, highlighting the structural stability and robustness of WS2. DFT calculations show that the electronic bandgap in both WS2 and WO3 increases when going from the bulk to monolayers. Na adsorption calculations show that Na atoms bind strongly in WO3 with a higher energy diffusion barrier when compared to WS2, corroborating the experimental findings. This study presents a significant insight into electrode material selection for sodium‐ion storage applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3