Silver Nanowires‐Based Flexible Gold Electrode Overcoming Interior Impedance of Nanomaterial Electrodes

Author:

Xue Hongsheng1,Shi Yacheng2,Tian Wenshuai34,Cao Meng5,Cao Houyong3,Na Zhaolin3,Jiang Ge6,Jin Zhengmu7,Lang Ming‐Fei8ORCID,Liu Yang2,Sun Jing3

Affiliation:

1. Affiliated Zhongshan Hospital of Dalian University Dalian Liaoning 116001 China

2. Department of Chemistry Beijing Key Laboratory for Analytical Methods and Instrumentation Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education Tsinghua University Beijing 100084 China

3. College of Chemical and Environmental Engineering Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification Dalian University Dalian Liaoning 116622 China

4. College of Marine Engineering Dalian Maritime University Dalian Liaoning 116026 China

5. School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China

6. College of Life and Health Dalian University Dalian Liaoning 116622 China

7. Dalian Ofei Electronics CO.,LTD. Dalian Liaoning 116021 China

8. Medical College Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification Dalian University Dalian Liaoning 116622 China

Abstract

AbstractIn the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm−2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5‐fold when the AgNWs are electrolytically corroded. By in situ surface‐enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long‐term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

Funder

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

Dalian Science and Technology Bureau

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3