Room Temperature Ion Beam Synthesis of Ultra‐Fine Molybdenum Carbide Nanoparticles: Toward a Scalable Fabrication Route for Earth‐Abundant Electrodes

Author:

Fiedler Holger1,Malone Niall12,Mitchell David R. G.3,Nancarrow Mitchell3,Jovic Vedran14,Waterhouse Geoffrey I. N.24,Kennedy John14ORCID,Gupta Prasanth14ORCID

Affiliation:

1. National Isotope Centre GNS Science 30 Gracefield Road Lower Hutt 5010 New Zealand

2. School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand

3. Electron Microscopy Centre University of Wollongong Innovation Campus Squires Way Wollongong 2519 Australia

4. The MacDiarmid Institute for Advanced Materials and Nanotechnology School of Chemical and Physical Sciences Victoria University of Wellington Wellington 6040 New Zealand

Abstract

AbstractMolybdenum carbides are promising low‐cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase‐pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation. By tuning the implantation conditions, various molybdenum carbide phases, stoichiometries, and nanoparticle sizes can be accessed. For instance, molybdenum ion implantation into glassy carbon at 30 keV energy and to a fluence of 9 × 1016 at cm−2 yields a surface η‐Mo3C2 with a particle diameter of (10 ± 1) nm. Molybdenum implantation into glassy carbon at 60 keV to a fluence of 6 × 1016 at cm−2 yields a buried layer of ultrafine γ’‐MoC/η‐MoC nanoparticles. Carbon ion implantation at 20 keV into a molybdenum thin film produces a 40 nm thick layer primarily composed of β‐Mo2C. The formation of nanoparticles in each molybdenum carbide phase is explained based on the Mo‐C phase diagram and Monte‐Carlo simulations of ion‐solid interactions invoking the thermal spike model. The approaches presented are widely applicable for synthesis of other transition metal carbide nanoparticles as well.

Funder

Royal Society Te Apārangi

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3